Comparative Analysis on Two Schemes for Synthesizing the High Temporal Landsat-like NDVI Dataset Based on the STARFM Algorithm

نویسندگان

  • Ainong Li
  • Wei Zhang
  • Guangbin Lei
  • Jinhu Bian
چکیده

The NDVI dataset with high temporal and spatial resolution (HTSN) is significant for extracting information about the phenological change of vegetation in regions with a complex earth surface. The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) has been successfully applied to synthesize the HTSN by fusing the data with different characteristics. Based on the model, there are two different schemes for synthesizing the HTSN. One scheme is that red reflectance and near-infrared (NIR) reflectance are synthesized, respectively, and the HTSN is then obtained through algebraic operation (Scheme 1); the other scheme is that the red and NIR reflectance are used to calculate NDVI, which is directly taken as input data to synthesize the HTSN (Scheme 2). In this paper, taking the hill areas in eastern Sichuan China as a case, the two schemes were compared with each other. Seven Landsat images and time-series MOD13Q1 datasets spanning from October 2001 to February 2003 were used as the test data. The results showed the prediction accuracies of both derived HTSNs by the two different schemes were generally in good agreement, and Scheme 2 was slightly superior to Scheme 1 (R: 0.14 < Scheme 1 < 0.53; 0.15 < Scheme 2 < 0.53). Although the two HTSNs showed high temporal and spatial consistence, the small spatiotemporal difference between them had OPEN ACCESS ISPRS Int. J. Geo-Inf. 2015, 4 1424 a different influence on different applications. The coincidence rate of cropping intensity extracted from two derived HTSNs was fairly high, reaching up to 93.86%, while the coincidence rate of crop peak dates (i.e., the emerging dates of peaks in an annual time-series NDVI curve) was only 70.95%. Therefore, it is deemed that Scheme 2 can replace Scheme 1 in the application of extracting cropping intensity, so that more calculation time and memory space can be saved. For extracting more quantitative crop phenological information like crop peak dates, more tests are still needed in order to compare the absolute accuracy for both schemes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Method for Producing High Spatial-Resolution NDVI Time Series Datasets with Multi-Temporal MODIS NDVI Data and Landsat TM/ETM+ Images

Due to technical limitations, it is impossible to have high resolution in both spatial and temporal dimensions for current NDVI datasets. Therefore, several methods are developed to produce high resolution (spatial and temporal) NDVI time-series datasets, which face some limitations including high computation loads and unreasonable assumptions. In this study, an unmixing-based method, NDVI Line...

متن کامل

A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion

a r t i c l e i n f o The focus of the current study is to compare data fusion methods applied to sensors with medium-and high-spatial resolutions. Two documented methods are applied, the spatial and temporal adaptive reflectance fusion model (STARFM) and an unmixing-based method which proposes a Bayesian formulation to incorporate prior spectral information. Furthermore, the strengths of both ...

متن کامل

Bayesian Method for Building Frequent Landsat-Like NDVI Datasets by Integrating MODIS and Landsat NDVI

Studies related to vegetation dynamics in heterogeneous landscapes often require Normalized Difference Vegetation Index (NDVI) datasets with both high spatial resolution and frequent coverage, which cannot be satisfied by a single sensor due to technical limitations. In this study, we propose a new method called NDVI-Bayesian Spatiotemporal Fusion Model (NDVI-BSFM) for accurately and effectivel...

متن کامل

Land Cover Classification of Landsat Data with Phenological Features Extracted from Time Series MODIS NDVI Data

Temporal-related features are important for improving land cover classification accuracy using remote sensing data. This study investigated the efficacy of phenological features extracted from time series MODIS Normalized Difference Vegetation Index (NDVI) data in improving the land cover classification accuracy of Landsat data. The MODIS NDVI data were first fused with Landsat data via the Spa...

متن کامل

Assessing a Multi-Platform Data Fusion Technique in Capturing Spatiotemporal Dynamics of Heterogeneous Dryland Ecosystems in Topographically Complex Terrain

Water-limited ecosystems encompass approximately 40% of terrestrial land mass and play a critical role in modulating Earth’s climate and provisioning ecosystem services to humanity. Spaceborne remote sensing is a critical tool for characterizing ecohydrologic patterns and advancing the understanding of the interactions between atmospheric forcings and ecohydrologic responses. Fine to medium sca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ISPRS Int. J. Geo-Information

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015